If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+20=110
We move all terms to the left:
5y^2+20-(110)=0
We add all the numbers together, and all the variables
5y^2-90=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $
| -8/5=-4/7w-3/2 | | -8=-1/2(3)+b | | 3x+9=47 | | 24=h=34 | | 33.16d=123.16 | | (9x-3)+(3x+4)=0 | | 6(3y-1)=-3(3y+2) | | 9x+1=17+6x+20 | | 4(3x-1)+2=-(x-3)-x | | 4x+10+8x+15+6x+10=180 | | 13=-y+813 | | 8y+8=8y+9-1 | | -p=-24 | | 3/2x-1=3x-5 | | 10+21x=98+7x-4 | | 9+2/9k=-7 | | 4r+7-1r=3(5+1r) | | p/2+3=8 | | -4c-10=42 | | 2(x+3)=8x+5-6x | | 5k-2(k-6)=43 | | -¹½(5x-8)-1=6 | | -3=h+ | | v-1=2-3(1-8v) | | 1/5(30n+25)-1/8(32n+16)=14n-33 | | 11x+10=46+7x-4 | | 10h+h-10h=19 | | -½(5x-8)-1=6 | | 0.05p-0.01p=2+0.24 | | -(4t+7)=-2-4t | | 2x-(7-6x)=-3(x-5) | | 19g+2g+3g-21g=15 |